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Heating Characteristics of Thin Helical Antennas
with Conducting Cores in a Lossy Medium—
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Abstract—We report a combined theoretical and experimental
study of the heating characteristics of helical antennas in lossy
dielectric media. Proposed biomedical application of such anten-
nas include angioplasty, hyperthermia, and catheter ablation of
tissue. The study focuses on helical antennas, operated in the
normal mode (wavelength greater than antenna diameter but
comparable to antenna length), that are terminated at one end
by a short circuit and at the other by a coaxial feedpoint. The
analytical model is based on the helical sheath approximation,
extended to the case of lossy media. In addition, experimen-
tal studies were performed on helical antennas immersed in
aqueous electrolyte of various conductivity. The antennas show
two distinct modes of propagation: a slow mode similar to that
observed in helical antennas in loss-free media, and a faster
mode. The analytical/numerical results are in good agreement
with experimental data, thus demonstrating the validity of the
model.

I. INTRODUCTION

ELICAL antennas are well known for their applications

in communications, where they are typically employed
in their endfire mode. Quite a different application involves
their use for heating, using long, thin antennas immersed in
the media to be heated. Proposed biomedical applications of
such antennas include angioplasty, catheter ablation of tissue
[1], and hyperthermia [2]-[4].

Little work has been done to analyze the heating charac-
teristics of such helical antennas in lossy media, and most
previous reports are experimental in nature. Satoh et al. [2],
[3] and Wu et al. [4] described the heating patterns of several
helical antennas used as interstitial hyperthermia applicators;
they did not present a comprehensive theoretical or numerical
analysis of the antenna characteristics as functions of helical
pitch or other design parameters. The important issues include
the depth of heating and uniformity of heating along the length
of the antenna. There is a need for more general analysis of
such antennas, to describe their characteristics as functions of
antenna geometry and dielectric properties of the medium.
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There is a considerable amount of literature relevant to the
helical antenna. However, due to the complicated boundary
conditions imposed by the actual wire wound helix, all pre-
vious studies have relied on approximate models. One such
model, originally studied by Sensiper [5], approximated the
actual wire wound helix by an anisotropically conducting
sheath. Sensiper obtained the field distributions and dispersion
characteristics assuming the antennas were radiating into free
space. The antennas studied by Sensiper did not include an
inner core and were assumed to be infinite in length.

Neureuther et al. [6] extended Sensiper’s model to include
a conducting core (the case of interest here). He also studied a
more physically realistic, but mathematically difficult, model
consisting of a perfectly conducting spiral tape, and showed
that the sheath model was a good approximation. Neureuther
et al, like Sensiper, assumed the antennas were radiating
into free space and were infinite in length. Perini [7] carried
out an extensive theoretical and experimental study of helical
antennas. He used a spiral tape model with conducting core to
compare calculated results to experimental measurements. He
was primarily concerned with the antenna’s radiation pattern
and, consequently, only considered antennas radiating into
free space.

More recently, Hill and Wait [8] carried out an elegant
theoretical study on wave propagation along coaxial cables
with helical shields. Their model consisted of a dielectric
coated conductor which was shielded by a finite number of
helices. Utilizing a modal expansion technique, they solved
for the propagation characteristics of waves traveling along
their antennas. They were particularly interested in the leaky
feeder technique used to provide radio communication in mine
tunnels. Although that is quite different from the application
of interest here, the method used by Hill and Wait is utilized
in this work.

Only a few investigators have studied the helical antenna
immersed in a lossy medium, and these studies have been
numerical in nature. Chen [9] developed an integral equation
for an infinite length helical sheath antenna radiating into a
lossy medium. His equations could then be solved numerically
for the antenna’s current distribution. Casey and Bansal [10]
extended Chen’s work to the case of a finite length helical
sheath antenna in a general lossy medium. In addition, they
developed a numerical method based on the moment method
for solving their integral equation. The antennas considered
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by these investigators did not include a dielectrically coated
inner conductor or the effects of a coaxial feedpoint and short
circuit termination, as is the case here. However, the solutions
reported by Casey and Bansal were used to check limiting
cases for the model presented in this work.

The model presented in this paper extends the analytical
work of Hill and Wait, Neureuther er al, Sensiper, and
others to include the effects of a coaxial feedpoint, a short
circuit termination, and an external lossy medium. These
considerations, which are necessary for the present application
of microwave catheter ablation, have not, to the best of
our knowledge, been studied by any previous investigator of
helical antennas.

In this paper, we first present an analytical antenna model
for the helical sheath antenna immersed in lossy media. We
then extend the analysis to include a coaxial feedpoint and a
short circuit termination. Finally, the results from the analytical
antenna model are compared to experimental results.

II. ANTENNA MODEL

A typical insulated helical antenna [11] for biomedical
applications is shown in Fig. 1. This antenna is fabricated from
a coaxial transmission line with inner and outer conductors of
radii ¢ and b, separated by a (loss-free) dielectric medium
of permittivity €1 and permeability p,. At the end of this
transmission line, the other conductor is stripped back for a
distance L and the helical antenna placed over the line. The
antenna is connected at the distal end to the inner conductor of
the coaxial line, and at the proximal end to the outer conductor
of the transmission line. Thus, the antenna has length L, and
in this arrangement it is terminated at one end by the coaxial
feedpoint, and at the other by a short circuit. The medium
outside the helical wire is taken to infinite in extent, lossy but
nonmagnetic, with parameters 3 = &4 — jej, and p,.

Following the approach of Sensiper, we model the helical
antenna in cylindrical coordinates (p, ¢, z) by a sheath helix,
i.e., an anisotropically conducting cylindrical tube (Fig. 2).
The sheath is assumed to be perfectly conducting in a di-
rection making an angle o with the plane perpendicular to
the axis of the antenna, and perfectly insulating normal to
this direction. The short circuit termination is modeled by a
perfectly conducting cap at the end of the antenna.

III. FORMULATION

To determine the fields present in the inside and outside the
dielectric media, a modal expansion technique is utilized. This
method is based on the technique used by Hill and Wait [8],
Casey [10], Lee [12], and others in treating loosely braided
coaxial cables with helical shields.

The electric and magnetic fields in the regions internal and
external to the helical sheath (represented by subscripts 1 and
2, respectively) are constructed using the electric and magnetic
Hertz vectors I1¢ and II™, respectively. For a waveguide
whose cross section is uniform along the z direction, it has
been shown that a general solution to Maxwell’s equation can
be found from only the z components of these vectors [13].
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Fig. 1. Helical antenna of length L, outer radius b, inner radius a, helical
pitch angle o, and pitch p, immersed in an external lossy media.
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Fig. 2. Helical sheath model of length L, outer radius b, inner radius
a, helical pitch angle «, immersed in an external lossy media. Sheath
model defined as anisotropically conducting thin cylinder, which is perfectly
conducting at an angle, «, w.r.t. horizontal axis and perfectly insulating normal
to that direction. Perfectly conducting cap provides short circuit termination.

Thus, in each region,
E = —jup,V x II™ + (k2 + VV-)er
H = jweV x II* + (K + VV)II™ 6))
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where w is the angular frequency, k is the wavenumber
in the internal (k1 = (w+/(ioe1))) or external (ko =
(wy/(1oe2) )) regions, II® = T1%% and II"™ = I17*2. All field
quantities vary with time according to e’“%.
The z component of the Hertzian vector potential satisfies
the scalar Helmholtz equations in each region
(V2 + &%) =0
(V2+ K07 =0 )

with the appropriate boundary conditions. There are several so-
lutions for II¢ and II7* for this equation. The total solution can
thus be written as the linear superposition of these solutions

Hg(pa ¢7 Z) = Z Z Hi,p(p)e—jﬂnmze—jndﬁ
np
7 (p, ¢, 2) = 3 3 TIT, (p)e™IPmrzeind

n p

€)

where n and p represent variations in the azimuthal and radial
directions, respectively.

The boundary conditions for the electric and magnetic fields
at p = b are

E2P(b)y = B2 (b),
EGT(b), = EgP(b),
HPP(b)y = HIP(b)y + g *°

H;p(b)l - Hg’p(b)z _j;b,p “)
n,p

where jP and j »~ Tepresent the z and ¢ components of
the surface current density for the (n,p) mode, and the
superscripts 7 and p denote the field components derived from
the corresponding mode of II7 , and II7?,. The boundary
conditions at p = a are

EP(a) = E}7(a) = 0. )

After solving (2) and matching the boundary conditions
given above, the general solutions can be obtained as given
by Hill and Wait [8].

We are assuming in this case that the helical antennas
are being driven by a coaxial line source (with its dominant
mode), in which the electric and magnetic source fields are
independent of azimuthal angle ¢. Due to this symmetry in
the coaxial line source, and since the antennas are electrically
thin (2rb << A), it can be assumed that the n = 0 modes
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are of interest here. For these modes, the solutions reduce to
the following expressions as given in [8]: (see (6) and (7) at

bottom of page)
where
Uo:\/ﬂg"—k%a Vo=\/ﬂ3—k§

Zo(uop) = Io(uop) - %((—1;?‘% Ko(uup)
Z:(Uo/’) = Io(uop) - é‘%ﬁ);% Ko(uop) (8)

where 3, £ Bop and I, and K, are the modified Bessel
functions of the first and second kind, and the prime refers to

a derivative with respect to the entire argument. The constants
A, A}, B,, B} are given

4 = J1uoZ o (uob) sin(c)

® 2mbwv,[ea K (16b) Zo(uob)u, ~ €1 K, (vob) Z! (uob)v,)
A = L.Z¥ (uob) cos(a)

® 2mbu, (KL (o) 22 (uob)ve — KL (Vob) ZX (uob)u,)
B - 7o Ko (v,b) sin(ar)

? T 2mbwiuo[ea K. (Vo) Zo (1b) 1y — €1 Ko(1h) Z! (1oh) )
B* 1K, (vob) cos(a) ©

o= 2mbuo [K!, (160) Z3 (Uob)vy — K. (Vb)) Z2 (uob)u,)

where I; = 2mwbj. /sin(a) = 27wbj4/cos(a) is the total surface
current of the n = 0 mode [8]. The relations given above for
n = 0 are true for all modes with radial variation p; but for
convenience, the subscript p has been omitted.

IV. DISPERSION CHARACTERISTICS

A dispersion relationship between the propagation constant
0, and free-space wavenumber k (= W/Eolho ) can be derived
from the boundary condition that the electric field component
on the helical sheath in the direction o must vanish.

2 . 2
w?pu, cos(a) o sin{c)

K.(vob) o Zr(u,b) T T K (w,b) Z7 (1,b)

E(vob) Yo T Zr(unb) Yoo 2R, (5,8) Yo T €17, (u,b) Vo

=0. (10)

The propagation constant §,, which may be complex in
general, can be calculated by determining the roots of the
above equation. For the special case where the inner and outer
media are identical, this dispersion relation reduces to that

p>b

Ep = ‘jﬂoVvoKé(VoP)C_]:'B"Z
Ey = j[j,oonA:K;(llop)e—]ﬁ"z
E, = —VonKo(uop)e_jﬁ"Z

H, = —jﬁau,,A:K,')(l/op)e"jﬂvz

a<p<b

Ep = *jﬂouoBoZé(Uop)e_Jﬁoz
Ey = jpowioB: 2} (uop)e=ifo?
Ez = _,u’(z)BOZO(uop)e—]ﬁ"z

Hy = —jwesv, A K (vop)e 1P ©
H, = -2 A K, (v,p)e P>

HP = _jﬁouoB:Z:,(uop)e“jﬂoz

Hy = —jweiu,BoZ! (uop)e=iPo> -

H, = —u2B}Z}(u,p)e P>
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Fig. 3. Slow and fast wave kib — Bb diagram (k; = wv'(poe1) for
b/a = 2.0, n = 0, helical pitch angle o = 15°, &) /¢} = 30 and the
loss tangent, tan(y) = &l /&), is varied from 0.1 to 0.7.

earlier reported in [5]. In considering the present resulis, we
distinguish between antennas in lossy and lossless media; only
the latter case was discussed in [5].

Lossless Media: In this case, for the lowest order guided
mode of n = 0 and for the parameters used in our problem,
the propagation constants 3, are real, and greater than the
wave number of the external media ko. The corresponding
guided waves propagate more slowly along the antennas than
plane waves in the medium, and are the slow waves of helical
structures. For modes (n > 0), the wave numbers can be
complex, and were studied in some detail in [5].

Lossy Media: For lossy external medium where Re(ks) >
Re(k1), the propagation constants for the guided modes are.
found to be complex in general, and their magnitudes are not
necessarily greater than the magnitude of the wave number
of the external medium. We utilize a numerical method to
solve the dispersion equation (10) for the complex propagation
constant (3,, under a variety of conditions. The method was
based on a modified Newton-Raphson procedure, imple-
mented using Matlab [MathWorks, Inc.]. For lossless external
media, the result agree with solutions given in [5]. '

V. NUMERICAL RESUITS

Fig. 3 presents dispersion diagrams (k-3 diagrams) for the
n = 0 guided modes of the antenna in lossy media. In this
figure, the pitch angle is fixed at 15 degrees; the loss tangent
tan(y) = €”/¢’ of the outside medium is varied from 0.1
to 0.7.
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Fig. 4. Slow and fast wave propagation constant vs. helical pitch angle for
f =915 MHz, b = 0.1 cm, a = 0.05 cm, &) /e] = 30 with ¢/ = 2 and
loss tangent, tan(y) = £ /<5, is varied from 0.1 to 0.7.

Fig. 4 shows the propagation constant 8, as a function of
helical pitch angle c. Again, the loss tangent of the outside
medium is varied, but the frequency is fixed at 915 MHz (a
typical frequency used in biomedical applications). The real
part of the permittivity of the outside medium was taken to be
30 times greater than that of the inside insulation 5 /&} = 30.

The solutions for the lossy media are quite different from the
loss-free case, and in particular reveal two distinct propagating
guided modes. One mode, identified in Fig. 3 and 4 as Suow,
has a phase velocity less than that of plane waves-in the
external media and corresponds to a similar slow wave mode
found in the lossless case (Re(ky) < Re(ks) < Re(Bsiow)).
Another mode, identified as Bgaster,. has a phase velocity
greater than that of plane waves in the external media, but
less than that of the inside dielectric (Re(k1) < Re(Biaster) <
Re(kz)). It appears that this guided mode can only exist if
the outside medium has loss, and consequently, to the best of
our knowledge, has not been reported in previous studies of
helical antennas radiating into free space.

The effect of varying the loss of the outside medium can
be seen in Fig. 3 and 4. Clearly, as the loss tangent increases,
only the attenuation constant of the slow wave is significantly
affected.

IThe term faster mode generally refers to modes with phase velocities
greater than that of the internal and external medium. Here, we use the term
faster mode to refer to modes with phase velocities greater than that of plane
wave propagation in the external medium, but less than in the internal medium.
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VI. EFFECT OF FEEDPOINT AND TERMINATION

The above results describe the characteristics of guided
waves that can propagate along an infinitely long helical
sheath structure. However, it is necessary to account for the
terminations of the helical antenna which, for present purposes,
consist of a coaxial feedpoint at one end and a short circuit
at the other.

The effect of these terminations can be modeled by ex-
panding the given source fields on an orthogonal basis using
orthogonality relations that can be obtained for modes in the
helical sheath model. We present, here, such orthogonality
relations for the helical sheath. This specific analysis follows
from a more general analysis given by Mclsaac [14].

Orthogonality Relations

Consider any two different modes, viz., mth and nth modes,
propagating in the helical sheath. The Lorentz reciprocity
theorem is used to relate them by

¢S] 2n N N
ut ) [~ [ [Entor) < Fnlpr0)
= En(p,6) X Ha(p,9)] - aopddp=0. (1)

For those modes in which 8, = —f,,, the above integral may
obtain a nonzero value.

In general, for a bidirectional reciprocal waveguide, the
electric and magnetic fields of an arbitrary source (represented
by superscript s) at location z can be expanded into an
infinite sum of forward and backward traveling guided modes
(represented by superscripts + and —, respectively) and a
continuous set of radiation modes:

0 N
Es(pa¢7z): Z Z(an7pE~'Ip(p’¢)e_jﬂi—,pz

n=—oc p=1

+ bup B (0, )e™10%)

+ Radiation modes (12)
B e} N . N
(o8, 2) = > 3 (anpli, (o, $)e™350
n=—oo0 p=1
+ bnpHiy (0, 8)e 9707
+ Radiation modes (13)

Since we are interested in the heating characteristics seen near
the surface of the helical antennas, the radiation modes, which
contribute primarily to the antenna’s far field, are not included
in this analysis. For our helical sheath case, where we take
only n = 0 guided modes and ignore the radiation modes,
(12) and (13) reduce to

N
B*(p,2) = Y (ap B (p)e ™% % 4 b, B (p)e 7% 2) (14)
p=1

N
H*(p,2) = Y (aplf (0)e ™% * + by 17 (p)e ™% %) (15)
p=1
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where the subscript n = 0 has been omitted for convenience,
and the ¢ dependance removed to illustrate that only those
modes independent of azimuthal variation are being consid-
ered.

The unknown coefficients a, and b, are obtained by apply-
ing the Lorentz reciprocity theorem (11) to (14) and (15). This
results in the following expressions for a, and by, as given by
Mclsaac [14]:

f:o[~;x1-:fs—]:773xﬁ;]-dzpdp

+
—iByz,
e 7% fay =

(16)

I [Br x B - Bf x Hy | aupdp

— 7 B x e - B x B} - a.pdp

e P 7h, = (17)

S (B x B = B > 7| -aepdp

Equations (16) and (17) are valid for any reciprocal wave-
guide. If possible, it is convenient to express these relations
only in terms of the forward traveling modes and source field.
For the case of the sheath helix, this can be accomplished
by noting the relationship between the propagation constant
and field components of the forward and backward traveling
waves given as

ﬂ;:_ﬂ(—)i—7 E;:_E:a EL;:E;_’ Ez_:E;—v
H; =-Hy, H;=Hf and H; =HJ.
Substituting these equalities into (16) and (17) results in the

following expansion coefficients a, and b, for the sheath
helix:

e IPr7q, =
-1 (E::PH; +EJ Hy + EJH , + E';Hm,)pdp (18)
2 [ (BhoHE, + B, Hip)pdp
etilezp, =
I ( Aty — E;—;PH; B E;H;:p + E;H;fp)pdp (19)

2 [ (EfoHE, + Ef,Hiy)pdp

where E° and H® refer to the known source fields at z,
+ g+ g+ gt - - - —

Ep,P’ E¢,p’ HP,P’ H¢,p’ and Ep,p’ E¢>,p’ Hp,p and Hdup are

the transverse field components of the forward and backward

traveling waves, respectively.

Introduction of the Feedpoint from the Coaxial Source

We assume that the helical antennas are driven by a coaxial
line source. In considering the source field distribution, we
ignore higher order modes in the coaxial cable, and we also
use normalized electric and magnetic fields. At the feedpoint
of the antenna z = 0 (i.e., the junction of the antenna with the
inner conductor of the coaxial line), the normalized electric
and magnetic field distributions are assumed to be

E;:% Hj = ;_1% a<p<b 20)
E3=0  H$=0 p>b.
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Assuming that the waveguide is infinitely long, contribution
of the coaxial source at z = 0 to the forward traveling modes
can be expressed as

B(p,2=0) ~ ZapE+<p>
=1
H?(p,z=0) = ZapH;'(p) . (21)
=1

To obtain the unknown coefficients, a,, we substitute the
electric and magnetic fields from the coaxial source (20) into
the orthogonality relation (18). This results in

- f: (E;-p

2[5 (Bl + E

5‘: +H;;7p)dp

E} Hzf%,)pdp '

ap = (22)

Introduction of a Short Circuit Termination

The antennas are shorted at the distal end (z = L), where
the helix is connected to the inner line of the coaxial cable.
The reflections from this short circuit termination can also be
included in the model. For simplicity, we assume that only a
single reflection occurs at the end of the antenna, and that the
reflected wave does not significantly disturb the source fields
at z = 0. In a lossy external medium, this is justified due
to the rapid attenuation of both forward and reflected waves
along the antenna.

Since we model the short circuit termination as a perfectly
conducting cap at z = L, the sum of the forward and
.reflected waves must then satisfy the condition that the total
tangential electric field vanishes at this termination. To satisfy
this condition, the tangential component of electric field for
the reflected wave must be related to the incident wave at

= L by

Ef =E,p+E;¢=-Efp~Ef¢ (23)
where superscripts — and + refer again to the reflected and
incident traveling waves, respectively, and subscript ¢ denotes
the tangential component of electric field. Since this effectively
means that the reflection coefficient at z = L is essentially
unity, the tangential component of magnetic field, of the
reflected wave, is related to those of the forward traveling
wave as

HS =H;p+H,0=HSp+Ho. (24

The total reflected wave at z = L, denoted by subscript
tot, defined in (23) and (24), can also be expanded into a sum
of the n = 0 propagating modes. However, in this case, we

1883

To Data Acquisition System
*®
z4 P /1
\)
A
\‘ X
A
\
Y
1)
A\
AY
Thermistor
Probe <} _ Test
-— Antenna
To915 P VU A,
Microwave\Generator P ne
Electrolyje”
Solutioe(
rd
Y4

Fig. 5. SAR mapping apparatus. Thermistor probe is translated about the
test antenna, and records local specific absorption rate in bath of electrolyte
solution.

choose the expansion in terms of modes propagating in the
—z direction. Hence,

N.
Eiy(p) =) bpEy (p)e™ %
p=1

N
Higy(p) D bpHy (p)e™"r =, 25)
p=1
The total reflected electric and magnetic fields at z- = L are
obtained by substituting (22) into (21), replacing z by L, and
using (23) and (24). Thus,

. N [ (Bl H,) de
Egp D)= Y — (Ehe f3 ; ‘)

p=1 2fa (Ep,p E H ,p) pdp

-EF(p)e 9P L (26)
N N —f i 61 +H dp
Hi(p, L) = Z (+ d i )

p=1 2f (EPJJ +E¢,pHp,p) pdp

A (p)e IR L @7)
The unknown coefficients, by, for the reflected wave can now
be obtained by applying (23)—(27) to the orthogonality relation
(19), and are given as (see (28) at the bottom of the page)
where the terms which contain subscript tot refer to the field
components defined in (26) and (27). The total reflected wave
is now obtained by substituting (28) into (25).

be95 L

faoo ( p,pHé tot T E¢ pHp tot T Ep totH¢ P + E¢ toth p>pdp

2 [ (E,,,,,HM + E¢’pH,,,p) pdp

(28)
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Fig. 6. (a) Measured and calculated normalized SAR patterns for helical antennas immersed in distilled water and driven by a 30 Watt, 915 MHz generator.
The antenna length is L = 3.0 cm, inner radius, @ = .03 cm, outer radius, b = 0.1 cm. Inside dielectric is teflon with £; = 2.1. Helical pitch angles:
Antenna A o = 18°; Antenna B o = 11°.(b) Measured and calculated normalized SAR patterns for helical antennas immersed in various concentrations of
NaCl electrolyte, and driven by a 30 Watt, 915 MHz generator. The antenna length is, L = 3.0 cm, inner radius, @ = 0.03 cm, outer radius, b = 0.1 cm.
Inside dielectric is teflon with ¢; = 2.1 and the helical pitch angle, o = 11°.

VII. ToraL ELECTRIC AND MAGNETIC FIELDS

After including the coaxial line source and the short circuit
termination, the total electric and magnetic fields are obtained
as the sum of forward plus reflected modes as

N
Bior = E;Et + E;t = z (apE;—e_jﬂ;—Z + prp_e_jﬁ;Z>
p=1
(29)

N
gtot = ‘F‘[ttt + ﬁt;t = Z (G/pﬁ:e_jﬂ;—z + bpﬁp_e—jﬁp_z>
p=1
(30)

where the coefficients a, and b, are given by (22) and (28),
respectively. The quantity of interest here is the specific
absorption rate (SAR) which is now given as

1 ~
SAR= —g¢ Etot Kg (31)

2p

where o and p are the conductivity and density of the outside
medium, respectively.

VIII. EXPERIMENTAL STUDIES

The antenna SAR patterns were experimentally measured
using the computer-controlled apparatus shown in Fig. 5. The
antennas consisted of helices 0.2 cm in diameter and length
ranging from 3.0 to 15.0 cm, mounted on standard semirigid
coaxial line. The helices were wound using precision spring-
winding facilities at Arrow International (Reading, PA).

The antenna was mounted in a tank filled with aqueous
electrolyte of varying conductivity. The probe consisted of
a small thermistor, 0.25 mm in diameter, encased in a glass
micropipette, whose thermal response time was less than 0.1 s.
The leads of the thermistor were a twisted pair of shielded
wires, aligned perpendicularly to the field of the antenna.
This arrangement was found to be sufficiently immune from
interference to permit accurate measurements of the antenna
SAR pattern. The probe was mounted on a translating plat-
form, controlled by stepping motors. The entire measurement
process, including movement of the probe and recording
and analysis of the output of the thermistor, was controlled
by a laboratory computer (Hewlett-Packard Vectra) running
ASYST.

To measure the SAR pattern, the transient temperature
increase in the outside medium was measured following a short
pulse (0.5 s) from a 30-W 915-MHz microwave transmitter. In
other experiments, we have established that convective fluid
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flow requires longer periods (several seconds) to develop; thus,
the probe records the local rate of heating (and, hence, the
local SAR) uncontaminated by artifact from fluid convection.
Using this apparatus, the three-dimensional SAR pattern of an
antenna could be mapped with a spatial resolution of 0.5 mm,
over a total time period of a few hours.

IX. EXPERIMENTAL RESULTS

In Fig. 6(a), the measured normalized SAR patterns with
two different helical pitch angles (¢« = 11°, and 20°) in
distilled water are compared to the calculated SAR patterns. In
Fig. 6(b), the normalized SAR pattern for one of the antennas
(o = 11°) in electrolyte solutions of increasing conductivity
are compared to the calculated SAR.

The calculated and measured results show a distinct standing
wave pattern along the length of the antenna, whose wave
number depends strongly on the helical pitch angle. As the
conductivity of the external medium increases, the heating
pattern shifts toward the antenna’s tip. This results in a
highly nonuniform heating pattern, which is unattractive for
the present application of catheter ablation. We will show, in a
subsequent paper, that the addition of a thin layer of insulation
around the outside of the helical structure can produce a more
uniform heating pattern.

X. INpUT IMPEDANCE

To gain a deeper understanding of the heating characteristics
of the helical antenna, it is necessary to consider the input
impedance also. In Fig. 7, the measured resistive and reactive
components of the input impedance are plotted as a function
of frequency. The outside medium was 0.8% saline, and
antennas with helical pitch angles varying from 4° to 15° were
measured. The results show an insensitivity of input impedance
with changes in helical pitch angle. This most likely reflects the
contribution of the fast wave which is also rather insensitive
to variations in helical pitch angle.

Unfortunately, the helical sheath model could not adequately
predict the measured input impedance. This is not surprising,
since the input impedance is far more sensitive to current dis-
tribution near the feedpoint and to angular variations in electric
field than the SAR pattern. The present helical sheath model
assumes no variations with respect to ¢. Moreover, higher
order modes, which were not considered, could significantly
affect the input impedance. In order to reasonably predict the
input impedance, the helical sheath model should probably be
replaced by a more realistic (and complicated) model such as
a helical tape model.

XI. DISCUSSION

There is clearly a good agreement between the antenna field
patterns that are predicted by the model, and the experimental
results. For these antennas, the antenna current (and hence
SAR distribution in the medium) strongly reflects the pres-
ence of standing waves along the antenna. These patterns
are strongly sensitive to the helical pitch; a tighter helix
results in a lower propagation constant and tighter standing
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Fig. 7. Input Impedance vs. frequency for 3.0 cm long helical antennas
of various pitch angles immersed in 0.8% (wt/wt) NaCl. Inner radius,
a = 0.03 cm, outer radius, b = 0.1 cm.

wave pattern. Prolonged heating will lead to a more diffuse
heating distribution than shown here due to the effects of heat
conduction and convection.

Another prominent feature is the high sensitivity of the
antenna SAR pattern to the conductivity of the medium. This
results from the fact that one mode is much more strongly
damped than the other, and essentially vanishes for media that
are very lossy. For the proposed biomedical applications, this
will result in an antenna which heats predominantly at its distal
tip. We will show, in a subsequent contribution, that this effect
is much less pronounced in helical antennas covered by a thin
layer of insulation. This result will be reported shortly.

These feature have significant implications for the prospec-
tive biomedical application of such antennas. Clearly, the
depth of heating is very limited and far less than that of a
simple dipole of comparable dimensions [15]. On the other
hand, helical antennas can be designed that have a greater
uniformity of heating along their length when they are covered
by a layer of insulation. For applications (such as hyper-
thermia) where the goal is to achieve the greatest depth of
heating, dipole antennas are obviously preferable. For catheter
ablation or angioplasty applications of depth of heating is often
neither required nor desirable, and helical antennas might be
preferable.
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